
J Glob Optim (2009) 43:357–372
DOI 10.1007/s10898-008-9306-x

Branch and bound algorithm for multidimensional
scaling with city-block metric

Antanas Žilinskas · Julius Žilinskas

Received: 3 April 2007 / Accepted: 28 March 2008 / Published online: 17 April 2008
© Springer Science+Business Media, LLC. 2008

Abstract A two level global optimization algorithm for multidimensional scaling (MDS)
with city-block metric is proposed. The piecewise quadratic structure of the objective func-
tion is employed. At the upper level a combinatorial global optimization problem is solved by
means of branch and bound method, where an objective function is defined as the minimum
of a quadratic programming problem. The later is solved at the lower level by a standard qua-
dratic programming algorithm. The proposed algorithm has been applied for auxiliary and
practical problems whose global optimization counterpart was of dimensionality up to 24.

Keywords Multidimensional scaling · City-block metric · Branch and bound

1 Introduction

Multidimensional scaling (MDS) is a technique for exploratory analysis of multidimensional
data widely usable in different applications [2,6]. Pairwise dissimilarities among n objects
are given by the matrix (δi j), i, j = 1, . . . , n. A set of points in an embedding metric space
is considered as an image of the set of objects. Normally, an m-dimensional vector space is
used, and xi ∈ Rm , i = 1, . . . , n, should be found whose inter-point distances fit the given
dissimilarities. Images of the considered objects can be found minimizing a fit criterion, e.g.
the most frequently used least squares STRESS function:

A. Žilinskas
Department of Mathematics and Informatics, Vilnius University, Naugarduko 24, 03225 Vilnius,
Lithuania
e-mail: antanasz@ktl.mii.lt

J. Žilinskas (B)
Vilnius Gediminas Technical University, Saulėtekio 11, 10223 Vilnius, Lithuania
e-mail: zilinskasjulius@gmail.com

123

358 J Glob Optim (2009) 43:357–372

S(x) =
n∑

i=1

n∑

j=1

wi j
(
d

(
xi , x j

)− δi j
)2

, (1)

where x = (x1, . . . , xn), xi = (xi1, xi2, . . . , xim); d(xi , x j) denotes the distance between
the points xi and x j ; it is supposed that the weights are positive: wi j > 0, i, j = 1, . . . , n.
Usually δi j = δ j i , δi i = 0, wi j = w j i , and d(xi , x j) = d(x j , xi), therefore it is possible to
sum only either j > i or i > j terms and multiply by two, but (1) is more convenient for
the derivation of the lower level quadratic programming problems in the next section and
definition of them in matrix form. Usually Minkowski distances are used:

dr (xi , x j) =
(

m∑

k=1

∣∣xik − x jk
∣∣r

)1/r

. (2)

Equation (2) defines Euclidean distances when r = 2, and city-block distances when r = 1.
The most frequently used distances are Euclidean. However, MDS with other Minkowski
distances in the embedding space can be even more informative than MDS with Euclidean
distances [1].

In the present paper the MDS problem with the STRESS criterion and city-block dis-
tances in the embedding space are considered. STRESS normally has many local minima.
It is invariant with respect to translation and mirroring. It can be non differentiable even
at a minimum point [20]; the case of city-block metric is different from the other cases of
Minkowski metric where positiveness of distances at a local minimum point imply differ-
entiability of STRESS [8,10]. MDS with city-block distances is a difficult high dimensional
(x ∈ RN , N = n × m) global optimization problem. However STRESS with city-block
distances is piecewise quadratic, and such a structure can be exploited for tailoring of an ad
hoc algorithm.

A survey of city-block MDS was presented in [1]. A combinatorial approach for city-
block MDS was proposed in [13], where combinatorial local search is used to construct good
object orders along dimensions, and least-squares are used to estimate the coordinates of
image points for the objects based on the object orders. A smoothing approach for city-block
MDS was proposed in [11], where smoothing excludes some local minima of STRESS. The
technique was extended to any Minkowski distance in [12]. A heuristic algorithm based on
simulated annealing for two-dimensional city-block scaling was proposed in [3]. Each coor-
dinate axis is partitioned by uniformly spaced points, and a simulated annealing algorithm
is used to search the lattice defined by these points aiming to minimize one of two types
of STRESS either the sum of squares (1), or the sum of corresponding absolute values. The
solution found is locally improved by quadratic programming.

A two level minimization method for the two-dimensional embedding space was proposed
in [20] where a problem of combinatorial optimization is tackled by evolutionary search at the
upper level, and a problem of quadratic programming is tackled at the lower level. The paral-
lel version of the algorithm is proposed and investigated in [19]. The generalized method for
arbitrary dimensionality of the embedding space is developed and experimentally compared
with distance smoothing approach and simulated annealing in [21].

Most papers on MDS consider local optimization or metaheuristic search which provide
rather good values of objective function but cannot guarantee that the global minimum is
found. In the present paper a version of two level algorithm is proposed where the upper level
combinatorial problem is tackled by branch and bound. The proposed algorithm is suitable to
solve middle size MDS problems exactly. The lower bound for the objective function is found
solving lower level problems of smaller size taking into account only some of n objects.

123

J Glob Optim (2009) 43:357–372 359

2 Multidimensional scaling with city-block distances

STRESS (1) with city-block distances d1(xi , x j) can be redefined as

S(x) =
n∑

i=1

n∑

j=1

wi j

(
m∑

k=1

∣∣xik − x jk
∣∣− δi j

)2

. (3)

Let A(P) be a set such that

A(P) = {
x|xik ≤ x jk for pki < pkj , i, j = 1, . . . , n, k = 1, . . . , m

}
,

where P = (p1, . . . , pm), pk = (pk1, pk2, . . . , pkn) is a permutation of 1, . . . , n; k =
1, . . . , m. A(P) is not empty since it contains for example the points with equal coordinates
xik = c, i = 1, . . . , n, k = 1, . . . , m, where c is an arbitrary constant.

For x ∈ A(P), (3) can be rewritten in the following form

S(x) =
n∑

i=1

n∑

j=1

wi j

(
m∑

k=1

(
xik − x jk

)
zki j − δi j

)2

,

where

zki j =
{

1, pki > pkj ,

−1, pki < pkj .

Since the function S(x) is quadratic over polyhedron x ∈ A(P), the minimization problem

min
x∈A(P)

S(x) (4)

can be reduced to the quadratic programming problem

min

⎛

⎝−
m∑

k=1

n∑

i=1

xik

n∑

j=1

wi jδi j zki j +

1

2

⎛

⎝
m∑

k=1

m∑

l=1

n∑

i=1

xik xil

n∑

t=1,t �=i

wi t zki t zli t −
m∑

k=1

m∑

l=1

n∑

i=1

n∑

j=1, j �=i

xik x jlwi j zki j zli j

⎞

⎠

⎞

⎠

s.t.
n∑

i=1

xik = 0, k = 1, . . . , m, (5)

x{ j |pk j=i+1},k − x{ j |pk j=i},k ≥ 0, k = 1, . . . , m, i = 1, . . . , n − 1. (6)

Polyhedron A(P) is defined by the linear inequality constraints (6), and the equality con-
straints (5) ensure centering to avoid translated solutions. The feasible set defined by (5) and
(6) is not empty since at least the point xik = 0, i = 1, . . . , n, k = 1, . . . , m is feasible. A
standard quadratic programming method can be applied to solve this problem.

The structure of the minimization problem (4) is favorable to apply a two level minimi-
zation:

min
P

S(P), (7)

s.t. S(P) = min
x∈A(P)

S(x), (8)

123

360 J Glob Optim (2009) 43:357–372

12
12

a

b

12
21

a

b

21
12

a

b

21
21

a

b

Fig. 1 Mirrored solutions with respect to changing direction of coordinate axes in the case of m = 2 and
corresponding permutations defining the sequence of coordinate values of image points representing objects
a and b

123
132

a

b
c

132
123

a

b
c

123
231

a

b

c

231
123

a

b
c

132
231

a

b

c

231
132

a

b
c

Fig. 2 Pairs of mirrored solutions with respect to exchanging of coordinates in the case of m = 2 and cor-
responding permutations defining the sequence of coordinate values of image points representing objects a, b
and c

where (7) is a problem of combinatorial optimization, and (8) is a problem of quadratic
programming.

The upper level (7) objective function is defined over the set of m-tuple of permutations
of 1, . . . , n representing sequences of coordinate values of image points. The number of
feasible solutions of the upper level combinatorial problem is (n!)m . A solution of MDS
with city-block distances is invariant with respect to mirroring when changing direction of
coordinate axes or exchanging of coordinates. Figures 1 and 2 illustrate mirrored solutions in
the case of m = 2. As it can be seen from Fig. 1 there are 2m equivalent solutions which can
be represented by one of them. Similarly it can be seen from Fig. 2 that there are groups of m!
equivalent solutions which can be represented by one of them. The feasible set can be reduced
taking into account such symmetries. The number of feasible solutions can be reduced to
(n!/2)m refusing mirrored solutions changing direction of each coordinate axis. It can be
further reduced to approximately (n!/2)m/m! refusing mirrored solutions with exchanged
coordinates. It is not exactly (n!/2)m/m! as not all possible solutions belong to the groups
of m! equivalent solutions. Denoting u = n!/2, the number of feasible solutions is u in the
case m = 1, (u2 + u)/2 in the case m = 2, (u3 + 3u2 + 2u)/6 in the case m = 3, and
(u4 + 6u3 + 11u2 + 6u)/24 in the case m = 4.

The upper level combinatorial problem can be solved using different algorithms, e.g. small
problems can be solved by explicit enumeration. In this paper a branch and bound algorithm
for optimization of the upper level problem is proposed enabling guaranteed global minimum
of problems of dimensionality up to n = 12, m = 2 and n = 8, m = 3 using a PC with
Pentium IV 3 GHz processor.

3 Branch and bound for multidimensional scaling

The main concept of branch and bound is to search for the optimum, constructing a search tree
so that only some of the feasible solutions should be explicitly evaluated detecting subsets of
feasible solutions, represented by branches of the search tree, which cannot contain optimal
solutions. The bound for the objective function over a subset of feasible solutions should be
evaluated and compared with the best objective function value found. If the evaluated bound

123

J Glob Optim (2009) 43:357–372 361

12

123 132 231

1234 1243 1342 2341 1324 1423 1432 2431 2314 2413 3412 3421

Fig. 3 A search tree for m = 1

is worse than the known function value, the subset cannot contain optimal solutions and the
branch describing the subset can be pruned. The fundamental aspect of branch and bound is
that the earlier the branch is pruned, the smaller the number of complete solutions that will
need to be explicitly evaluated.

Evaluation of the bounds for the objective function is the most important part of the branch
and bound technique. If the bounds are not tight, the search may lead to complete enumeration
of all feasible solutions. This is not acceptable practically for all but the smallest problems,
because the number of feasible solutions grows exponentially with the size of problem. Con-
struction of the bound depends on the objective function and the type of subsets of feasible
solutions over which the bound is evaluated.

In the proposed algorithm, a subset of feasible solutions is represented by a partial solution
where only n of n objects are considered. Such a partial solution is defined by m-tuple of
permutations P of 1, . . . , n. The lower bound for STRESS is a value of partial STRESS at
the minimum point of the lower level quadratic programming problem for n objects over a
polyhedron A(P):

min
X∈A(P)

S(X) = min
X∈A(P)

n∑

i=1

n∑

j=1

wi j

(
m∑

k=1

∣∣xik − x jk
∣∣− δi j

)2

, (9)

where X = (x1, . . . , xn). Assignment of other objects later in the search must not change the
sequence of coordinate values of image points of earlier assigned n objects and consideration
of other objects cannot decrease value of STRESS function (it can only be increased).

A search tree for m = 1 is shown in Fig. 3. Every numeral represents a value of p1i ,
i = 1, . . . , n. To refuse mirrored solutions the search tree starts with a root node represent-
ing partial solution “12” and therefore the image point representing the second object will
never be to the left from the image point representing the first object. The lower bound for
the objective function over this partial solution is not evaluated because it represents the
feasible set of solutions. The image point representing the third object can be added to the
right of the first two, between them or to the left of them. Therefore assignment of the third
object is represented by three branches in the search tree ending with the nodes “123”, “132”
and “231”. Although the sequence numbers of the first two objects may be changed (13
and 23) after assignment of the third object, their sequence is not changed (1 < 2, 1 < 3
and 2 < 3). The image point representing the fourth object has four possible positions and
therefore assignment of the fourth object is represented by four branches. Again although the
sequence numbers of the first three objects may be changed after assignment of the fourth
object, their sequence is not changed. Assignment of the fifth object would be represented
by five branches and so on. If the value of partial STRESS (9) at the minimum point of the
lower level quadratic programming problem for a partial solution is greater than the value of
STRESS at the minimum point of an already evaluated complete solution, the subset of feasible
solutions represented by this partial solution cannot contain an optimal solution. Therefore
the branch representing such a partial solution can be pruned, which means that the further
search in this subset is not performed. For m = 1 the number of feasible solutions is n!/2.

123

362 J Glob Optim (2009) 43:357–372

12
12

123
12

132
12

231
12

123
123

123
132

123
231

132
132

132
231

231
231

1234
123

1243
123

1342
123

2341
123

1234
132

1243
132

1342
132

2341
132

1234
1234

1234
1243

1234
1342

1234
2341

1243
1243

1243
1342

1243
2341

1342
1342

1342
2341

2341
2341

Fig. 4 A search tree for m = 2

A search tree for m = 2 is shown in Fig. 4. Every numeral represents a value of pki ,
k = 1, . . . , m, i = 1, . . . , n. Lower rows represent greater k. To refuse mirrored solutions
the search tree starts with a root node representing partial solution “12/12” and therefore
the image point representing the second object will never be to the left or up from the image
point representing the first object (see Fig. 1). The lower bound over this partial solution is
not evaluated because it represents the feasible set of solutions. The image point representing
the third object horizontally can be to the right of the first two, between them or to the left
of them. Therefore assignment of the third object is represented by three branches in the
search tree ending with the nodes “123/12”, “132/12” and “231/12”. Vertically it can be
below the first two, between them or above of them. Therefore the node “123/12” has three
branches ending with the nodes “123/123”, “123/132” and “123/231”. To refuse mirrored
solutions with exchanged coordinates some restrictions on permutations of equal sizes are
set. Let us define the order of permutations like one in Fig. 3: for permutations of 1, . . . , 3
it is “123” ≺ “132” ≺ “231” and for permutations of 1, . . . , 4 it is “1234” ≺ “1243” ≺
“1342”≺ “2341”≺ “1324”≺ “1423”≺ “1432”≺ “2431”≺ “2314”≺ “2413”≺ “3412”≺
“3421”. A permutation pk cannot precede pl for k > l (l < k ⇒ pl � pk). Therefore partial
solutions “132/123”, “231/123” and “231/132” are not allowed, as they represent solutions
symmetric to “123/132”, “123/231” and “132/231” respectively (see Fig. 2). For m = 2
the number of feasible solutions is n!2/8 + n!/4. When m > 1 some subsets of feasible
solutions are represented with partial solutions defined by permutations of different sizes,
for example “123/12”. However the value of partial STRESS (9) is evaluated only over the
partial solutions defined by permutations of equal sizes.

A search tree for m = 3 is shown in Fig. 5. Similar restrictions hold as for the case m = 2.
For m = 3 the number of feasible solutions is n!3/48+ n!2/8+ n!/6. Similarly a search tree
can be built for larger values of m.

An iteration of a classical branch and bound algorithm processes a node in the search
tree representing a not yet explored subspace of the solution space. Iteration has three main
components: selection of the node to process, branching, and bound calculation. There are
three main strategies of selection:

– Best first – select the node with minimal lower bound.
– Depth first – select the node which is farthest from the root node.
– Breadth first – select the node which is closest to the root node.

123

J Glob Optim (2009) 43:357–372 363

Fig. 5 A search tree for m = 3 12
12
12

123
12
12

132
12
12

231
12
12

123
123
12

123
132
12

123
231
12

132
132
12

132
231
12

231
231
12

123
123
123

123
123
132

123
123
231

123
132
132

123
132
231

123
231
231

132
132
132

132
132
231

132
231
231

231
231
231

The proposed branch and bound algorithm is built using depth first selection and its structure
is similar to the structure of algorithms in [4]. The advantage of the depth first strategy is
that the search tree may be constructed sequentially to avoid storing of unbranched nodes.
This is very important when the search tree is big. The breadth first search requires storing
of unbranched nodes in a first-in-first-out structure. The best first search requires storing of
unbranched nodes in a priority queue structure, which not only requires memory resources,
but insertion and removal of nodes takes at least logarithmic time to the number of nodes in
the queue in the worst case.

The proposed branch and bound algorithm for MDS with city-block distances is shown in
Algorithm 1. Evaluation of partial solution corresponds to the bound calculation. The search
tree is constructed sequentially implementing depth first search. Order of permutations is
described earlier in this section. Verification of order of permutations in a tuple (pk ≺ pk−1)
enables refusal of mirrored solutions with exchanged coordinates. The main cycle continues
while n > 2 refusing mirrored solutions with changed direction of coordinate axis.

Future work may be devoted for improvement of the proposed algorithm using heuristic
rearrangement of objects before optimization or different selection strategies in branch and
bound, improvement of bound analyzing minimal impact of unassigned objects to the value
of objective function, and development of parallel versions of the algorithm.

4 Experimental investigation

The efficiency of the proposed algorithm has been evaluated experimentally. The proposed
algorithm has been implemented in C++, and g++ 3.2.3 has been used for compilation.
External quadratic programming package quadprog 1.4–7 available at http://cran.r-project.
org is used. Experiments have been performed on a PC with 3 GHz Pentium IV processor
and Scientific Linux 3.0.5 operating system.

The accuracy of fit while evaluated via minimum of S(x) depends on n and δi j , i, j =
1, . . . , n. Therefore such a criterion is not very convenient to compare accuracies of scaling
for different sets of objects. To reduce such an undesirable impact, a relative error

f (x) =
√√√√S(x)

/
n∑

i=1

n∑

j=1

wi jδ
2
i j

123

http://cran.r-project.org
http://cran.r-project.org

364 J Glob Optim (2009) 43:357–372

Algorithm 1 Branch and bound algorithm for multidimensional scaling

Input: n; m; δi j , wi, j , i, j = 1, . . . , n
Output: S∗
1: pki ← i, i = 1, ..., n, k = 1, ..., m
2: n← n + 1; k ← m + 1; S∗ ← ∞
3: while n > 2 do
4: if k > m then
5: if n > 2 and n < n then
6: if minX∈A(P)

S(X) ≥ S∗ then // Evaluate partial solution
7: k ← k − 1
8: else
9: n← n + 1; k ← 1
10: end if
11: else
12: n← n + 1; k ← 1
13: end if
14: end if
15: if n > n then
16: S∗ ← min

(
S∗, minx∈A(P) S(x)

)
// Evaluate complete solution

17: n← n; k ← m
18: end if
19: if n > 2 then
20: // Form next tuple of permutations
21: if pkn = 0 then
22: pkn ← n
23: if k > 1 and pk ≺ pk−1 then // Detect refusable symmetries
24: pki ← pk−1i , i = 1, ..., n
25: end if
26: k ← k + 1
27: else
28: pkn ← pkn − 1
29: if pkn = 0 then
30: pki ← pki − 1, i = 1, ..., n − 1
31: k ← k − 1
32: if k < 1 then
33: n← n − 1; k ← m
34: end if
35: else
36: find i : pki = pkn , i = 1, ..., n − 1
37: pki ← pki + 1; k ← k + 1
38: end if
39: end if
40: end if
41: end while

is used in the presentation of the results. Performance of deterministic global optimization
algorithms is measured using the optimization time t and the smallest function value found.
We also present the number of the lower level quadratic programming problems solved
(NQPP).

Several sets of multidimensional points corresponding to well understood geometric
objects have been used for experimental investigation: the sets of vertices of multidimensional
simplices and cubes. Dissimilarity between vertices is measured by city-block distance in the
original vector space. Global optimization problems of increasing complexity correspond to
increasing dimensionality of the original space d . Below we use shorthand ‘simplex’ and
‘cube’ for the sets of their vertices.

123

J Glob Optim (2009) 43:357–372 365

The number of vertices of multidimensional simplex is n = d + 1, and the dimension-
ality of global minimization problem is N = m × (d + 1). Two types of multidimensional
simplices are used. The distances between any two vertices of standard simplex are equal:
δi j = 1, i �= j . Vertices of unit simplex can be defined by

vi j =
{

1, if i = j + 1,

0, otherwise,

∣∣∣∣ i = 1, . . . , d + 1, j = 1, . . . , d.

The number of vertices of multidimensional cube is n = 2d , and the dimensionality
of global minimization problem is N = m × 2d . The coordinates of i-th vertex of a d-
dimensional cube are equal either to 0 or to 1, and they are defined by a binary code of
i = 0, . . . , n − 1.

A frequently used test problem for MDS algorithms is based on experimental testing of
several soft drinks [9]. 38 students have tested ten different brands of soft drinks. Each pair
was judged on its dissimilarity on a 9 point scale (1 – very similar, 9 – completely different).
The accumulated dissimilarities have been used as a practical data set in our experiments.
This problem is referred as ‘cola’ problem in the results below, n = 10 in this problem.

Problems of analysis of pharmacological binding affinity data [17] have been used as other
practical data sets. ‘ruusk’ represents binding affinity data of Ruuskanen et al. [15] analyzed
as properties of three human and five zebrafish α2-adrenoceptor proteins, n = 8; ‘uhlen’ rep-
resents binding affinity data of Uhlèn et al. [16] analyzed as properties of human, rat, guinea
pig and pig α2-adrenoceptor proteins, n = 12; ‘hwa12’ represents binding affinity data of
Hwa et al. [14] analyzed as properties of ligands, n = 9; ‘hwa21’ represents binding affinity
data of Hwa et al. [14] analyzed as properties of wild type and mutant proteins, n = 12. The
binding affinity data is represented through a matrix, one dimension formed by the different
ligands tested in a series of experiments while the other dimension represents the different
proteins. Dissimilarities of proteins are computed as city-block distances between vectors of
the log10-transformed binding affinities representing properties of the proteins. Dissimilari-
ties of ligands are computed as city-block distances between vectors of the log10-transformed
binding affinities representing ligands.

Problems with m = 1 can be solved efficiently maximizing Defays [7] criterion using
branch and bound [5]. However problems with m = 1 have been included in the experimental
investigation of the proposed algorithm to have a larger set of problems and to investigate the
worst case scenario. Exchange of vertices of standard simplex does not impact the problem
as all vertices are equally distant from all others. Therefore all lower level quadratic pro-
gramming problems (8) for the problems of standard simplices with m = 1 have the same
minimum and no partial solution in the search tree can be pruned. In such a worst case the
branch and bound algorithm is more costly than explicit enumeration of all feasible solutions
because of additional evaluation of bounds over partial solutions. It is interesting to measure
the decrease of efficiency in the worst case. Similarly exchange of non zero vertices of unit
simplex does not impact the problem. Cube also has some symmetries. It would be possible
to take into account symmetries of the data sets restricting possible permutations and increase
the efficiency [18], however symmetries in practical data sets are rare known and therefore
this is not considered in the present paper.

Performance of two level algorithm for MDS with explicit enumeration of feasible solu-
tions of the upper level combinatorial problem and standard quadratic programming algorithm
for the lower level problem is shown in Table 1. The numbers of objects in the problems are
shown in the first column. The results of experimental investigation are shown using two
columns for each dimensionality of the embedding space (m = 1, m = 2 and m = 3).

123

366 J Glob Optim (2009) 43:357–372

Table 1 Performance of MDS algorithm based on explicit enumeration of the upper level problem

n m = 1 m = 2 m = 3

t , s (NQPP) f ∗ t , s (NQPP) f ∗ t , s (NQPP) f ∗

unit simplices
3 0.00 (3) 0.00 0.00 (6) 0.00 0.00 (10) 0.00
4 0.00 (12) 0.3651 0.00 (78) 0.00 0.02 (364) 0.00
5 0.00 (60) 0.4140 0.05 (1830) 0.00 2.02 (37820) 0.00
6 0.00 (360) 0.4554 2.02 (64980) 0.1869 653.91 (7840920) 0.00
7 0.04 (2520) 0.4745 133.28 (3176460) 0.2247 334788 (2670344040) 0.00
8 0.24 (20160) 0.4917 11631 (203222880) 0.2569
9 2.48 (181440) 0.5018

10 33.16 (1814400) 0.5113
11 372.59 (19958400) 0.5176
12 5208.0 (239500800) 0.5236
13 78579 (3113510400) 0.5279

standard simplices
3 0.00 (3) 0.3333 0.00 (6) 0.00 0.00 (10) 0.00
4 0.00 (12) 0.4082 0.01 (78) 0.00 0.02 (364) 0.00
5 0.00 (60) 0.4472 0.05 (1830) 0.1907 1.79 (37820) 0.00
6 0.01 (360) 0.4714 1.73 (64980) 0.2309 580.87 (7840920) 0.00
7 0.02 (2520) 0.4879 113.77 (3176460) 0.2621 301860 (2670344040) 0.0945
8 0.21 (20160) 0.5000 10183 (203222880) 0.2825
9 2.22 (181440) 0.5092

10 27.39 (1814400) 0.5164
11 334.30 (19958400) 0.5222
12 4687.0 (239500800) 0.5270
13 68762 (3113510400) 0.5311

cubes
4 0.00 (12) 0.4082 0.00 (78) 0.00 0.02 (364) 0.00
8 0.23 (20160) 0.4787 12518 (203222880) 0.2245

ruusk
8 0.25 (20160) 0.2975 12183 (203222880) 0.1096

hwa12
9 3.06 (181440) 0.0107

cola
10 27.07 (1814400) 0.3642

uhlen
12 6413.0 (239500800) 0.2112

hwa21
12 6648.0 (239500800) 0.1790

Time of optimization in seconds (t , s) and the number of the lower level quadratic problems
solved (NQPP) are given in the left columns. The value of relative error (f ∗) corresponding
to the minimum of STRESS is given in the right columns. The number of quadratic program-
ming problems solved grows very fast with the number of objects n and they are exactly as
predicted in Sect. 3.

Performance of the proposed two level algorithm for MDS with branch and bound for the
upper level combinatorial problem and standard quadratic programming algorithm for the
lower level problem is shown in Table 2. The numbers of quadratic programming problems
solved include the lower level problems corresponding to evaluated complete and partial
solutions of the upper level problems, however quadratic programming problems for partial
solutions are smaller than ones for complete solutions as only some of objects are considered
there.

123

J Glob Optim (2009) 43:357–372 367

Table 2 Performance of MDS algorithm based on branch and bound for the upper level problem

n m = 1 m = 2 m = 3

t , s (NQPP) f ∗ t , s (NQPP) f ∗ t , s (NQPP) f ∗

unit simplices
3 0.00 (3) 0.00 0.00 (6) 0.00 0.00 (10) 0.00
4 0.00 (14) 0.3651 0.00 (73) 0.00 0.02 (313) 0.00
5 0.00 (73) 0.4140 0.03 (662) 0.00 0.49 (9837) 0.00
6 0.01 (432) 0.4554 0.51 (16076) 0.1869 46.67 (578691) 0.00
7 0.03 (2951) 0.4745 17.65 (422940) 0.2247 2652.0 (20674563) 0.00
8 0.32 (23110) 0.4917 1675.0 (29943080) 0.2569
9 2.77 (204549) 0.5018 134281 (1905072549) 0.2759

10 31.67 (2018948) 0.5113
11 404.64 (21977347) 0.5176
12 5545.0 (261478146) 0.5236
13 86436 (3374988545) 0.5279

standard simplices
3 0.00 (3) 0.3333 0.00 (6) 0.00 0.00 (10) 0.00
4 0.00 (14) 0.4082 0.00 (63) 0.00 0.01 (133) 0.00
5 0.00 (73) 0.4472 0.03 (1322) 0.1907 1.12 (23017) 0.00
6 0.01 (432) 0.4714 0.85 (27255) 0.2309 25.49 (335771) 0.00
7 0.05 (2951) 0.4879 59.61 (1655631) 0.2621 11111 (92710201) 0.0945
8 0.24 (23110) 0.5000 5107.0 (102073658) 0.2825
9 2.47 (204549) 0.5092 502844 (3574743410) 0.2991

10 28.33 (2018948) 0.5164
11 361.60 (21977347) 0.5222
12 4970.0 (261478146) 0.5270
13 73714 (3374988545) 0.5311

cubes
4 0.00 (14) 0.4082 0.00 (73) 0.00 0.02 (353) 0.00
8 0.12 (11260) 0.4787 124.68 (2157090) 0.2245 6189 (35216122) 0.00

ruusk
8 0.02 (665) 0.2975 3.85 (82617) 0.1096 838.68 (6381457) 0.0188

hwa12
9 0.02 (2217) 0.0107 203.25 (2344833) 0.00

cola
10 0.78 (60077) 0.3642 15594 (204022569) 0.1675

uhlen
12 0.62 (36559) 0.2112 35951 (312924750) 0.0825

hwa21
12 1.49 (71748) 0.1790

For better comparison of the performance of algorithms the results are plotted in Fig. 6.
Time of optimization is given in logarithmic scale. Dots represent time of optimization for
considered n-dimensional data sets in m-dimensional embedding space. Results for vari-
ous dimensional simplices and cubes are joined by lines. Results of the algorithm based on
explicit enumeration depend mostly on dimensionality of data and embedding space as all
dots are near the lines, the influence of type of data set is modest and therefore the data sets
are not specified in this plot.

The proposed algorithm behaves in the worst case scenario when highly symmetric data
sets of simplices are used with m = 1. In the case of standard simplices all lower level
problems for complete solutions are equivalent as they are symmetric [18]. Because of the
symmetric data no partial solution can be pruned. In the worst case scenario almost all partial
solutions should be evaluated as well as all complete solutions. The number of quadratic

123

368 J Glob Optim (2009) 43:357–372

n

t

3 4 5 6 7 8 9 10 11 12 13
0.1

1

10

100

1000

10000

100000 m=1

m=2

m=3

n

t

3 4 5 6 7 8 9 10 11 12 13
0.1

1

10

100

1000

10000

100000 m=1, simplices
m=2, unit simplices
m=2, standard simplices

m=3, unit simplices

m=3, standard simplices

m=1, cubes

m=2, cubes

m=3, cubes

m=1, cola m=1, uhlen
m=1, hwa21

m=2, ruusk

m=2, hwa12

m=2, cola
m=2, uhlen

m=3, ruusk

Fig. 6 Comparison of performance of algorithms based on explicit enumeration (upper plot) and branch and
bound (lower plot) for the upper level problem

programming problems solved is
∑n

i=3
i !
2 − n + 3 comparing to n!/2 of complete solutions

evaluated by the algorithm of explicit enumeration. Optimization time and the number of qua-
dratic programming problems of the proposed algorithm are up to 13% larger than these of
the algorithm based on explicit enumeration for problems which optimization is longer than
1 s. Plots of results for m = 1 simplices are very similar in both plots of Fig. 6. However for

123

J Glob Optim (2009) 43:357–372 369

m > 1 even for simplices the proposed algorithm performs better than explicit enumeration.
Plots of these results move to the right as optimization becomes faster. Standard simplices
are harder problems than unit simplices in the case m > 1 for the proposed algorithm as they
are more symmetric. The plots for unit simplices are lower than ones for standard simplices.

The proposed algorithm performs much better than the algorithm based on explicit enu-
meration for cubes and practical data sets even when m = 1. The number of lower level
quadratic programming problems solved while applying the branch and bound algorithm is
up to several thousand times less than the number of such problems solved while applying
explicit enumeration; correspondingly the solution time in the first case is up to ten thou-
sand times shorter than in the second case. Dots representing these results move down in the
lower plot of Fig. 6. However, it is even more important that the proposed algorithm can solve
larger problems in acceptable time. Dots representing these results appear in the lower plot of
Fig. 6. Problems of up to n = 12 have been solved for the two-dimensional embedding space,
and up to n = 8 for the three-dimensional embedding space. The largest solved problems
involve global optimization in N -dimensional (N = 24) space. Performance of the proposed
algorithm is better for practical data sets than for geometric data sets for the same m as it can
be seen in Fig. 6 where dots corresponding to the results of practical data sets are to the right
from corresponding plots of geometric data sets.

Minima of STRESS found for the two-dimensional scaling problems of binding affinity
data coincide with those in [17] proving that the evolutionary algorithm used in [17] has
found the true global minima.

To get some impression about the performance, the proposed algorithm was compared
with the two algorithms referenced below; it should be taken into account however, that the
proposed algorithm includes guaranteed finding of global minimum of STRESS while the
competing algorithms are based on some approximations of global minimum. The first algo-
rithm to compare is similar to the proposed one, and it differs from the proposed algorithm
only in tackling of the upper level problems; the competing algorithm is a two level hybrid
algorithm with evolutionary search at the upper level and standard quadratic programming
algorithm at the lower level [19,20]. The second algorithm to compare is the well known
distance smoothing algorithm [12]. The results are shown in Table 3. For the hybrid algorithm
the following default parameters were used: the size of population of the evolutionary algo-
rithm and the number of random initial individuals were equal to 60; 100 runs of 10 s length
have been performed. Smooth 4 (implementation of the smoothing algorithm developed by
their authors and available at http://people.few.eur.nl/groenen) has been used with the param-
eters recommended by its authors and given as defaults in his ‘input’ file; 100 random starts
have been performed. For two embedding spaces (of the dimensionality m = 2 and m = 3)
the best (min f ∗) and the worst (max f ∗) relative error corresponding to found minima of
STRESS in 100 runs are given (in two columns if different, and in one column if equal).

Both competing algorithms terminate after shorter time than the proposed algorithm based
on branch and bound. Such a result was expected as the proposed algorithm includes guar-
anteed finding of global minimum of STRESS while the competing algorithms terminate
with some appropriate approximations. The hybrid algorithm finds better values of f more
frequently (in 100 runs) than the distance smoothing algorithm, and the best value is found
by the hybrid algorithm in larger number of runs. However, the distance smoothing algorithm
requires shorter time.

Let us to complete the discussion on experimental results with a remark on the qualita-
tive influence of properties of the used data to the experimental results. The geometric data
sets imply properties of minimization problem (1) which are most disadvantageous for the
branch and bound algorithm with respect to explicit enumeration; because of symmetries in

123

http://people.few.eur.nl/groenen

370 J Glob Optim (2009) 43:357–372

Table 3 Performance of other MDS algorithms

n Hybrid algorithm with evolutionary search Distance smoothing

m = 2 m = 3 m = 2 m = 3

Min f ∗ Max f ∗ Min f ∗ Max f ∗ Min f ∗ Max f ∗ Min f ∗ Max f ∗

unit simplices
3 0.00 0.00
4 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00
6 0.1869 0.00 0.1869 0.00
7 0.2247 0.00 0.2247 0.00
8 0.2569 0.0992 0.2569 0.0992 0.0993
9 0.2759 0.1272 0.2759 0.1272 0.1439

10 0.2936 0.1542 0.2936 0.1543 0.1548
11 0.3058 0.1679 0.3058 0.1679 0.1829
12 0.3167 0.1874 0.3167 0.1874 0.1969
13 0.3249 0.3259 0.2008 0.3249 0.3265 0.2008 0.2087

standard simplices
3 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00
5 0.1907 0.00 0.1907 0.00
6 0.2309 0.00 0.2309 0.00
7 0.2621 0.0945 0.2621 0.0945
8 0.2825 0.1250 0.2825 0.1250 0.1320
9 0.2991 0.1543 0.2991 0.1544 0.1548

10 0.3115 0.1682 0.3115 0.1682 0.1833
11 0.3217 0.1879 0.3217 0.3233 0.1879 0.1980
12 0.3300 0.3309 0.2013 0.3300 0.3307 0.2013 0.2096
13 0.3371 0.3377 0.2109 0.2118 0.3371 0.3379 0.2109 0.2143

cubes
4 0.00 0.00 0.00 0.00
8 0.2245 0.00 0.2245 0.2478 0.00

ruusk
8 0.1096 0.0188 0.0210 0.1096 0.1232 0.0189 0.0479

hwa12
9 0.00 0.00 0.0108 0.0114 0.0108 0.0127

cola
10 0.1675 0.1686 0.0676 0.0766 0.1694 0.2004 0.0676 0.0841

uhlen
12 0.0825 0.0826 0.0356 0.0381 0.0875 0.1188 0.0358 0.0481

hwa21
12 0.0497 0.0183 0.0191 0.0497 0.0502 0.0248 0.0482

data the objective function S(x) has many global minimum points, and all of them should be
explored by the algorithm guaranteeing finding the global minimum. In this case branching
subsequently generates large number of subproblems with minimum lower bounds request-
ing further branching of these subproblems. Therefore performance of the branch and bound
algorithm in this case is similar to the performance of explicit enumeration.

Contrary, for the hybrid algorithm and the distance smoothing algorithm these geometric
data sets are favorable since the number of good local (including global) minimum points is
relatively large implying not inconsiderable probability to find a good local minimum even
in one local descent.

123

J Glob Optim (2009) 43:357–372 371

In data sets corresponding to practical problems symmetries are absent implying prop-
erties of (1) more favorable for the branch and bound algorithm and less favorable for the
hybrid algorithm and the distance smoothing algorithm.

5 Conclusions and further research

Optimization problems occurring in MDS normally are tackled by heuristic algorithms
because of multimodality and other unfavorable properties of objective functions. Although
practically acceptable local minima frequently can be found in this way, it is interesting to
research algorithms aiming to find global minimum with guarantee; besides of some practical
applications such algorithms are of interest in further development of fast heuristic algorithms
to evaluate their precision. In the present paper problems of MDS with city-block metric in
the embedding space are considered. An algorithm is proposed to find global minimum with
guarantee for problems of modest but practically important dimensionality. The proposed
algorithm is of two level structure: a combinatorial problem at the upper level is solved by a
branch and bound technique, and a quadratic programming algorithm is applied at the lower
level. The proposed algorithm has been tested using data of several real world problems.

One of the main topics for the further research is the enhancement of efficiency of the
proposed algorithm by means of choosing the most appropriate method for the lower level
quadratic problems; among the candidates interior point methods can be mentioned. On the
other hand, availability of the algorithm with guaranteed precision will be helpful in the
further development of heuristic algorithms for upper level combinatorial problems where
simulated annealing, swarm intelligence, and other algorithms will be compared with the
presently used genetic algorithm.

Acknowledgements The research is supported by the Agency for International Science and Technology
Development Programmes in Lithuania through COST programme, Lithuanian State Science and Studies
Foundation within the project B-03/2007 “Global optimization of complex systems using high performance
computing and GRID technologies” and the NATO Reintegration grant CBP.EAP.RIG.981300.

References

1. Arabie, P.: Was Euclid an unnecessarily sophisticated psychologist? Psychometrika 56(4), 567–587
(1991)

2. Borg, I., Groenen, P.: Modern Multidimensional Scaling, 2nd edn. Springer, New York (2005)
3. Brusco, M.J.: A simulated annealing heuristics for unidimensional and multidimensional (city-block)

scaling of symmetric proximity matrices. J. Classif. 18(1), 3–33 (2001)
4. Brusco, M.J., Stahl, S.: Branch-and-Bound Applications in Combinatorial Data Analysis. Springer, New

York (2005)
5. Brusco, M.J., Stahl, S.: Optimal least-squares unidimensional scaling: improved branch-and-bound pro-

cedures and comparison to dynamic programming. Psychometrika 70(2), 253–270 (2005)
6. Cox, T., Cox, M.: Multidimensional Scaling. Chapman and Hall/CRC, Boca Raton (2001)
7. Defays, D.: A short note on a method of seriation. Br. J. Math. Stat. Psychol. 31, 49–53 (1978)
8. de Leeuw, J.: Differentiability of Kruskal’s stress at a local minimum. Psychometrika 49(1), 111–

113 (1984)
9. Green, P., Carmone, F., Smith, S.: Multidimensional Scaling: Concepts and Applications. Allyn and

Bacon, Boston (1989)
10. Groenen, P.J.F., Mathar, R., Heiser, W.J. : The majorization approach to multidimensional scaling for

Minkowski distances. J. Classif. 12(1), 3–19 (1995)

123

372 J Glob Optim (2009) 43:357–372

11. Groenen, P.J.F., Heiser, W.J., Meulman, J.J. : City-block scaling: smoothing strategies for avoiding
local minima. In: Balderjahn, I., Mathar, R., Schader, M. (eds.) Classification, Data Analysis, and Data
Highways, pp. 46–53. Springer, Heidelberg (1998)

12. Groenen, P.J.F., Heiser, W.J., Meulman, J.J.: Global optimization in least-squares multidimensional
scaling by distance smoothing. J. Classif. 16(2), 225–254 (1999)

13. Hubert, L., Arabie, P., Hesson-Mcinnis, M.: Multidimensional scaling in the city-block metric: a com-
binatorial approach. J. Classif. 9(2), 211–236 (1992)

14. Hwa, J., Graham, R.M., Perez, D.M.: Identification of critical determinants of α1-adrenergic receptor
subtype selective agonist binding. J. Biol. Chem. 270(39), 23189–23195 (1995)

15. Ruuskanen, J.O., Laurila, J., Xhaard, H., Rantanen, V.-V., Vuoriluoto, K., Wurster, S., Marjamaki, A.,
Vainio, M., Johnson, M.S., Scheinin, M.: Conserved structural, pharmacological and functional prop-
erties among the three human and five zebrafish α2-adrenoceptors. Br. J. Pharmacol. 144(2), 165–
177 (2005)

16. Uhlén, S., Dambrova, M., Näsman, J., Schiöth, H.B., Gu, Y., Wikberg-Matsson, A., Wikberg,
J.E.S.: [3H]RS79948-197 binding to human, rat, guinea pig and pig α2A-, α2B- and α2C-adrenoceptors,
Comparison with MK. 912, RX821002, rauwolscine and yohimbine. Eur. J. Pharmacol. 343(1), 93–
101 (1998)

17. Žilinskas, J.: Multidimensional scaling in protein and pharmacological sciences. In: Bogle, I.D.L.,
Žilinskas, J. (eds.) Computer Aided Methods in Optimal Design and Operations. Series on Comput-
ers and Operations Research, vol. 7, pp. 139–148. World Scientific, Singapore (2006)

18. Žilinskas, J.: Reducing of search space of multidimensional scaling problems with data exposing sym-
metries. Inform. Technol. Control 36(4), 377–382 (2007)

19. Žilinskas, A., Žilinskas, J.: Parallel hybrid algorithm for global optimization of problems occurring in
MDS-based visualization. Comput. Math. Appl. 52(1–2), 211–224 (2006)

20. Žilinskas, A., Žilinskas, J.: Two level minimization in multidimensional scaling. J. Global
Optim. 38(4), 581–596 (2007)

21. Žilinskas, A., Žilinskas, J.: A hybrid method for multidimensional scaling using city-block distances.
Math. Method. Oper. Res. accepted (2008)

123

	Branch and bound algorithm for multidimensional scaling with city-block metric
	Abstract
	1 Introduction
	2 Multidimensional scaling with city-block distances
	3 Branch and bound for multidimensional scaling
	4 Experimental investigation
	5 Conclusions and further research
	Acknowledgements

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

